Cebirsel İfadeleri Çarpanlara Ayırma

Matematik 8. Sınıf konu anlatım

Cebirsel İfadeleri Çarpanlara Ayırma

Bir cebirsel ifadeyi çarpanlarının çarpımı şeklinde yazmaya, o cebirsel ifadeyi çarpanlara ayırma denir. Cebirsel ifadeler çarpanlara ayrılırken farklı yöntemlerden faydalanılır.Aşağıda Cebirsel İfadeleri Çarpanlara Ayırma yöntemlerini tek tek inceleyelim.

1) ORTAK ÇARPAN PARANTEZİNE ALMA

Ortak çarpan parantezine alma konusunu 6.sınıfta görmüştük.8.sınıfta farklı olarak ortak ifadeler çarpım şeklinde verilmeyecek biz ortak çarpanları bulup çarpım şeklinde yazacağız.Ortak çarpan parantezine alırken bulduğumuz ortak çarpanları parantezin dışına ve geriye kalan ortak olmayan terimleri parantezin içine yazarız.

Cebirsel ifadeleri carpanlara ayirir4.

Örnek: a2 + 4a cebirsel ifadesini ortak çarpan parantezine alma yöntemi ile çarpanlarına ayıralım.

Terimleri çarpım şeklinde yazalım.

a·a +3·a

Ortak olan ifadeleri kırmızı renk ile gösterelim.

a·a +3·a

Ortak olan terimi parantez dışında , geriye kalan terimleri parantez içinde yazalım.

a·(a +3)

Örnek: 8x2 -2x cebirsel ifadesini ortak çarpan parantezine alma yöntemi ile çarpanlarına ayıralım.

Terimleri çarpım şeklinde yazalım.

2·4·x·x -2·x

Ortak olan ifadeleri kırmızı renk ile gösterelim.

2·4·x·x –2·x

Ortak olan terimi parantez dışında , geriye kalan terimleri parantez içinde yazalım.

2x·(4x – 1) 🤓 2x ‘in hepsi parantez dışına yazılırsa parantez içinde 1 kalır.

Örnek: 12x3 -15x2 cebirsel ifadesini ortak çarpan parantezine alma yöntemi ile çarpanlarına ayıralım.

Terimleri çarpım şeklinde yazalım.

3·4·x·x·x – 3·5·x·x

Ortak olan ifadeleri kırmızı renk ile gösterelim.

3·4·x·x·x – 3·5·x·x

Ortak olan terimi parantez dışında , geriye kalan terimleri parantez içinde yazalım.

3x2·(4x – 5)

Ortak Çarpan Parantezine Alma Modelleme

Cebirsel ifadeleri carpanlara ayirir.

2) GRUPLANDIRARAK ÇARPANLARA AYIRMA

 Bu yöntemde terimler kendi aralarında ortak çarpan bulunacak şekilde iki veya daha fazla gruplara ayrılır. Daha sonra ortak çarpan parantezine alınır. Gruplandırarak çarpanlara ayırma üçten fazla terimi olan cebirsel ifadelerde kullanılır.Gruplandırma metodunda gruplara ayırdıktan sonra parantez içindeki ifadeler aynı olması gerekir.

Örnek: xy + yz + xz + z2 cebirsel ifadesini gruplandırarak çarpanlarına ayıralım.

Cebirsel ifadeyi gruplara ayıralım.

1.grup xy+xz

2.grup yz+ z2 olsun

Ayırdığımız grupları ortak çarpan parantezine ayıralım.

1.grup xy+xz ➯ x(y+z)

2.grup yz+ z2 ➯ z(y+z)

Dikkat edersek 1. ve 2. grubun parantez içleri aynı

Gruplandırarak ortak çarpan parantezine aldıktan sonra x(y+z)+z(y+z) parantez içleri aynı olduğu için çarpanlardan biri parantez içi olacak şekilde ortak çarpan paranteze alalım.

(y+z)(x+z)

Örnek: by + 2ax + 2bx + ay cebirsel ifadesini gruplandırarak çarpanlarına ayıralım.

Cebirsel ifadeyi gruplara ayıralım.

1.grup by+2bx

2.grup 2ax+ ay olsun

Ayırdığımız grupları ortak çarpan parantezine ayıralım.

1.grup by+2bx ➯ b(y+2x)

2.grup 2ax+ ay ➯ a(2x+y)

Dikkat edersek 1. ve 2. grubun parantez içleri aynı

Gruplandırarak ortak çarpan parantezine aldıktan sonra b(y+2x) + a(2x+y) parantez içleri aynı olduğu için çarpanlardan biri parantez içi olacak şekilde ortak çarpan paranteze alalım.

(y+2x)(a+b)

3) ÖZDEŞLİKLERDEN YARARLANARAK ÇARPANLARA AYIRMA

Özdeşlikleri kullanarak çarpanlara ayırmada iki kare farkı özdeşliği ve tam kare özdeşliğinden yararlanarak çarpanlara ayıracağız.Şimdi bu özdeşlikleri kullanarak çarpanlara ayırma yöntemini inceleyelim

A)TAM KARE ÖZDEŞLİĞİ İLE ÇARPANLARA AYIRMA

Özdeşlikler konusunda öğrendiğimiz tam kare özdeşliğini bazı cebirsel ifadeleri çarpanlara ayırmada kullanabiliriz.

Bu yöntemde cebirsel ifade 3 terimden oluşur. Terimlerden 2 tanesi bir terimin karesi olacak ve 3.terimde karesi olan terimlerin çarpımının 2 katı olmalı. Bu şekilde olan cebirsel ifadeleri terimlerin toplamının parantez karesi şeklinde yazabiliriz.

Cebirsel ifadeleri carpanlara ayirir3. E1639075508991

Örnek: (4a-5b)2 ifadesinin eşitini tam kare özdeşliğinden yararlanarak bulalım.

Birinci terimin karesi

(4a)2 = 16a2

İkinci terimin karesi

(5b)2 = 25b2

Birinci terim ile ikinci terimin çarpımının iki katı

2· 4a·5b=40ab

Birinci terim ile ikinci terimin karelerinin toplamından birinci terim ile ikinci terimin çarpımının iki katının çıkarılması

16a2 + 25b2 – 40ab

16a2 – 40ab + 25b2

Örnek: (2x+3y)2 ifadesinin eşitini tam kare özdeşliğinden yararlanarak bulalım.

Birinci terimin karesi

(2x)2 = 4x2

İkinci terimin karesi

(3y)2 = 9y2

Birinci terim ile ikinci terimin çarpımının iki katı

2·2x·3y=12xy

İki terimin kareleri ile bu iki terimin çarpımının iki katının toplamına eşittir.

4x2 + 9y2 + 12xy

16a2 + 20ab + 25b2

B) İKİ KARE FARKI ÖZDEŞLİĞİ İLE ÇARPANLARA AYIRMA

Özdeşlikler konusunda öğrendiğimiz iki kare farkı özdeşliğini bazı cebirsel ifadeleri çarpanlara ayırmada kullanabiliriz.

Bu yöntemde cebirsel ifade 2 terimden oluşur. Cebirsel ifadedeki bu 2 terim de tam kare terim olmalı ve birbirinden çıkarılmalı. Bu şekildeki cebirsel ifadeleri bu iki terimin kareköklerinin toplamı ile farkının çarpımı şeklinde yazabiliriz.

Cebirsel ifadeleri carpanlara ayirir5.

Örnek: 9x2-36b2 ifadesinin eşitini iki kare farkı özdeşliğinden yararlanarak bulalım.

Birinci terimin karekökü 🤓

\sqrt {9x^2} = 3x

İkinci terimin karekökü 🤓

\sqrt {36b^2} = 6b

İki terimin kareköklerinin toplamı ile farkının çarpımı 🤓

(3x+6b)·(3x-6b)

📌 9x2-36b2 ifadesi (3x+6b)·(3x-6b) ifadesinin özdeşi olduğu için birbirine eşittir.

Örnek: 49m4-4n6 ifadesinin eşitini iki kare farkı özdeşliğinden yararlanarak bulalım.

Birinci terimin karekökü 🤓

\sqrt {49m^4} = 7m2

İkinci terimin karekökü 🤓

\sqrt {4n^6} = 2n3

İki terimin kareköklerinin toplamı ile farkının çarpımı 🤓

(7m2+2n3)·(7m2-2n3)

📌 49m4-4n6 ifadesi (7m2+2n3)·(7m2-2n3) ifadesinin özdeşi olduğu için birbirine eşittir.

Yeni Nesil Soru

🎥 Bir Soru Bir Video 🎥

Soru: Bilgi: Yol = Hız x Zaman ve x2-y2 = (x+y)·(x-y) olmak üzere;

Enes aralarındaki mesafe (80a2-45) km olan A şehrinden B şehrine saatte (4a-3) km sabit hızla gitmiştir. Enes B şehrinden dönerken hızını saatte 6 km arttırarak sabit hızla dönmüştür.

Cebirsel ifadeleri carpanlara ayirir6.

Buna göre Enes’in A şehrinden B şehrine gidiş ve dönüş süresi toplam kaç saattir?

A) 40a-50B) 40aC) 50D) 40a+50

Çözüm:

Cebirsel İfadeler Konu anlatımı bitti.

Konu ile alakalı test ve etkinlikler ile Cebirsel İfadeler konusunu pekiştirebilirsiniz.